Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office

ENERGY

Industrial Thermal Process Intensification

November 12th 2020

Joe Cresko – Chief Engineer, AMO joe.cresko@ee.doe.gov

Opportunity Space for Manufacturing

- Improve the energy and carbon productivity of U.S. manufacturing.
- Reduce life cycle energy and resource impacts of manufactured goods.

Manufacturing Goods

Use of Manufactured Goods

U.S. Energy Economy by Sector 98.5 quadrillion Btu, 2014 ¹

¹ Energy consumption by sector from EIA Monthly Energy Review, 2018

² Industrial non-manufacturing includes agriculture, mining, and construction

³ US economy energy losses determined from LLNL Energy Flow Chart 2014 (Rejected Energy), adjusted for manufacturing losses

⁴ Manufacturing energy losses determined from DOE AMO Footprint Diagrams (2014 data)

Sankey Diagram of Energy Flows in the U.S Manufacturing Sector

U.S. Manufacturing Sector (TBtu), 2014

Thermal Opportunity

Process Heating Energy Use/Loss in the U.S. Economy

Source: EIA Monthly Energy Review, Aug 2014; AEO 2014

- 7 Quads opportunity space. Process heating accounts for a sizable fraction of total U.S. energy use, and more direct energy use than any other energy consuming processes in manufacturing. Currently process heating is 95% fossil fuel based.
- **95% fossil fuel based**. Traditional industrial (thermal) processes can be inefficient, difficult to control and result in materials and products with compromised quality and performance.
- > 1 Quad potential. Assuming half of the energy lost in current process heating operations can be avoided, this represents a > 1% reduction in the total energy used in the U.S. economy.

Energy Used for Thermal Processing

In the U.S., the total energy consumed for thermal processing in these 8 industries is roughly 95% the total energy consumed for thermal processing in all U.S. industries

Source: EIA MECS 2014

Type of Thermal Processes Used for Eight Large Energy Consuming Industries

	Thermal Process Step	Iron & Steel	Petroleum Refining	Chemical Industry	Glass	Aluminum	Pulp & Paper	Food Processing	Cement
	Calcining								
	Curing and forming								
	Drying								
	Fluid heating								
	Heat treating (metal & nonmetal)								
	Metal and non-metal reheating								
	Metal and non-metal melting								
	Other heating - processing								
	Reactive thermal processing								
	Smelting, agglomeration, etc.								
	Steam generation								

Temperature Range	Color
Low Temperature (<800°F)	
Medium Temperature (800 to 1400°F)	
High Temperature (>1400°F)	

Manufacturing Energy Bandwidth Studies

Energy Consumption Bands and Opportunity Bandwidths Estimated in the Bandwidth Study

- Energy bandwidth studies of U.S.
 manufacturing sectors serve as general
 data references to help understand the
 range (or bandwidth) of potential
 energy savings opportunities
- The consistent methodology used in the bandwidth studies provides a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macro-scale

Source: https://www.energy.gov/eere/amo/energy-analysis-data-and-reports

Bandwidth Study Example – Chemicals

Energy Intensity

Technical Energy Savings Opportunities:

Energy Intensity e.g.:

Process efficiency Process integration Waste heat recovery

Carbon Intensity, e.g.:

Process efficiency
Feedstock substitution
Biomass-based fuels
Renewables

Use Intensity e.g.:

Circular economy Design for Re-X (recycling, reuse and remanufacturing)
Material efficiency and substitution

Source: DOE/AMO, Energy Bandwidth Studies (2015)

Note: 1 quad = 1000 TBtu

MCPI Taxonomy

Adapted from Stankiewicz and Moulijn, Chemical Engineering Progress, ©2000 American Institute of Chemical Engineers

Four Pillars of Thermal PI – Examples from RAPID's Portfolio

Alternative Thermal Processing

Manufacturing Supply Chain for Modular Solar-Thermochemical Conversion

Additive manufacturing and modular designs for distributed, solar-driven reforming of natural gas to hydrogen

Alternative Energetics for Hydrocarbon Upgrading

A viable reactor and catalysts for direct conversion of lower alkanes to aromatics using selective microwave heating

What is Potential to Decouple Thermal Operations in Mfg.?

Drivers – Moving Towards High Energy & Carbon Productivity

Thanks! joe.cresko@ee.doe.gov

Thermal Process Intensification:

Transforming the Way Industry Uses Thermal Process Energy November 5 - December 9, 2020

https://www.orau.gov/2020thermal

	High Temperature Metals	High Temperature Non - Metallic Minerals	Low/Medium Temperature Processing	Hydrocarbon Processing Industry					
Session 0 - Plenary Session (November 5 th at Noon – 3:00 pm ET)									
Pillar 1 & 2 – Transformative Low Thermal Budget and Alternative Thermal Processing	Session1 November 9 (Noon to 2:00 pm ET)	Session 2 November 12 (Noon to 2:00 pm ET)	Session 3 November 16 (Noon to 2:00 pm ET)	Session 4 November 20 (Noon to 2:00 pm ET)					
Pillar 3 – Transformative Supplemental Technologies	Session 5 - Dec 2 nd (Noon to 3:00 nm FT)								
Pillar 4 – Waste Heat Management Technologies	Session 6 - Dec 9 th (Noon to 3:00 pm ET)								